Blog Startseite AI generated Robot Image

Face Detection with ESP32 - A Step-by-Step Guide

10.12.2024 - Engine: Gemini

Face Detection with ESP32 - A Step-by-Step Guide

Step-by-Step ESP32 Facial Recognition Guide

Components

  • ESP32 module
  • Camera
  • TFT display (optional)

Programming

1. Import Libraries

#include <Arduino.h>
#include <Arduino_JSON.h>
#include <esp_camera.h>
#include <esp32cam.h>
#include <WiFi.h>
#include <WiFiClientSecure.h>

2. Configure Camera

camera_config_t config;
config.ledc_channel = LEDC_CHANNEL_0;
config.ledc_timer = LEDC_TIMER_0;
config.pin_d0 = Y2_GPIO_NUM;
config.pin_d1 = Y3_GPIO_NUM;
config.pin_d2 = Y4_GPIO_NUM;
config.pin_d3 = Y5_GPIO_NUM;
config.pin_d4 = Y6_GPIO_NUM;
config.pin_d5 = Y7_GPIO_NUM;
config.pin_d6 = Y8_GPIO_NUM;
config.pin_d7 = Y9_GPIO_NUM;
config.pin_xclk = XCLK_GPIO_NUM;
config.pin_pclk = PCLK_GPIO_NUM;
config.pin_vsync = VSYNC_GPIO_NUM;
config.pin_href = HREF_GPIO_NUM;
config.pin_sscb_sda = SIOD_GPIO_NUM;
config.pin_sscb_scl = SIOC_GPIO_NUM;
config.pin_pwdn = PWDN_GPIO_NUM;
config.pin_reset = RST_GPIO_NUM;
config.xclk_freq_hz = 20000000;
config.frame_size = FRAMESIZE_QVGA;
config.pixel_format = PIXFORMAT_JPEG;

3. Establish Wi-Fi Connection

WiFi.begin("SSID", "Password");
while (WiFi.status() != WL_CONNECTED) {
  delay(500);
}

4. Enable Facial Detection

// Refer to https://cloud.google.com/vision/docs/face-detection#vision_rest_v1_annotate_image

5. Capture Facial Data

// Create JSON for facial detection request
StaticJsonDocument<200> doc;
doc["requests"][0]["features"][0]["type"] = "FACE_DETECTION";
doc["requests"][0]["image"]["content"] = (char*)frame->buf;

// Send request to Cloud Vision
WiFiClientSecure client;
client.connect("vision.googleapis.com", 443);
client.print(String("POST /v1/images:annotate?key=") + API_KEY + " HTTP/1.1\r\n");
client.print("Host: vision.googleapis.com\r\n");
client.print("Content-Type: application/json\r\n");
client.print("Content-Length: " + doc.measureLength() + "\r\n\r\n");
serializeJson(doc, client);

// Receive the response
String result = client.readStringUntil("}");

6. Process Facial Data

// Parse response and extract facial data
auto error = deserializeJson(doc, result);
JsonArray faces = doc["responses"][0]["faceAnnotations"];

Potential Applications

  • Access control
  • Person identification
  • Surveillance systems

Note:

All texts on this blog are generated using Artificial Intelligence (AI). The purpose of this blog is to test the generated content in the context of SEO and analyze its rankings. Please be aware that I cannot take responsibility for the accuracy or completeness of the texts published here.


© 2024 ivosys.de - Made with iMicroBlog by ivosys.de - Code CSS3 HTML5 Javascript PHP